

FUNCTIONAL CHARACTERISTICS OF A SERIES OF N4-SUBSTITUTED 1-(2,3-DIHYDRO-1,4-BENZODIOXIN-5-YL)PIPERAZINES AS 5-HT_{1A} RECEPTOR LIGANDS.

STRUCTURE-ACTIVITY RELATIONSHIPS.

Authors: B.J. van Steen¹, I.van Wijngaarden¹, E.Ronken¹ and W.Soudijn²
¹Solvay Pharmaceuticals Research Laboratories, P.O.Box 900, 1380 DA Weesp, The Netherlands and
² Division of Medicinal Chemistry, Center for Bio-Pharmaceutical Sciences, P.O.Box 9502, 2300 RA Leiden, The Netherlands.

Received 20 May 1998; accepted 22 July 1998

Abstract: The agonistic/antagonistic profile of a series of 10 N4-substituted1-(2,3-dihydro-1,4-benzodiox-in-5-yl)piperazines is evaluated in the *in vitro* adenylyl cyclase assay. The profile is severely affected by the characteristics of the N4-substituents ranging from full agonism (benzamidoethyl derivative 1), mixed agonism/antagonism (phthalimidobutyl derivative 7) to predominantly antagonism (saccharinbutyl derivate 9). A novel full antagonist 10, as potent as WAY 100635, is obtained by substitution of Cl at C-7 of the benzodioxinyl moiety in 9. © 1998 Elsevier Science Ltd. All rights reserved.

Introduction: For the 5-HT_{IA} receptor many potent ligands are available. Most of these ligands are agonists or partial agonists. Full antagonists are rare (for review see¹). For the 5-HT_{IA} receptor ligands a great number of structure-affinity relationships have been published. But there is a paucity of published structure-activity relationships studies². In this paper the structural features for agonism, partial agonism and antagonism are presented of a series of N4-substituted benzodioxinyl piperazines using the adenylyl cyclase assay in CHO cells stably expressing the human 5-HT_{IA} receptor. The reference compounds flesinoxan, a full agonist, ipsapirone, a partial agonist and WAY 100635, a pure antagonist are included in the study.

The affinity of the compounds for the 5-HT_{1A} receptor is assessed in rat frontal cortex membranes.

Chemistry: The synthesis of the N4-substituted arylpiperazines 1, 2, 3, 4, 6 and 10 was published³⁻⁵. The synthesis of the novel arylpiperazines 5, 7, 8, 9 was carried out as outlined in the scheme. Physicochemical data of 5, 7, 8, 9.

* FAX (31).7.15.27.42.77

0960-894X/98/\$ - see front matter © 1998 Elsevier Science Ltd. All rights reserved. *PII:* S0960-894X(98)00406-5

$$Ar - N \qquad NH \xrightarrow{iv} Ar - N \qquad N - (CH2)3 CN \xrightarrow{ii} Ar - N \qquad N - (CH2)4 NH2$$

$$Ar - N \qquad N - (CH2)4 NH2 \xrightarrow{iii} Ar - N \qquad N - (CH2)4 - N - C \qquad F \qquad (5)$$

$$Ar - N \qquad NH \xrightarrow{iv} Ar - N \qquad N - (CH2)2 CI \xrightarrow{V} Ar - N \qquad N - (CH2)2 - N \qquad (7)$$

$$Ar - N \qquad NH \xrightarrow{Vi} Ar - N \qquad N - (CH2)4 - N \qquad (7)$$

$$Ar - N \qquad NH \xrightarrow{Vi} Ar - N \qquad N - (CH2)4 - N \qquad (9)$$

Scheme. reagents i.Cl(CH₂)₃CN/(iPr)₂NEt/CH₃CN); ii LiAlH₄/THF; iii. p-fluorobenzoylchloride /CH₂Cl₂; iv. Br(CH₂)₂Cl/NaOH/CH₂Cl₂; v. NaH/DMF/saccharin; vi. N-(4-bromobutyl) phthalimide /K₂CO₃ /DMF; vii. N-(4-bromobutyl) saccharin /K₂CO₃ /MEK. Ar = 1-(2,3-dihydro-1,4-benzodioxin. 5-yl) piperazine; saccharin =

Pharmacology: The agonistic / antagonistic profile of the compounds were evaluated by the adenylyl cyclase assay in CHO cells stably expressing the human 5-HT_{1A} receptor⁷. The radioligand binding studies were carried out on rat frontal cortex membranes using [³H]-8-OH-DPAT as radioligand⁸.

Results: The intrinsic activity and potency of the reference 5-HT_{1A} receptor ligands are summarized in Table 1'. In the adenylyl cyclase assay flesinoxan acts as a full agonist. Ipsapirone is a partial agonist, displaying no antagonistic properties at concentrations up to 10⁻⁶ M. WAY 100635 is a potent full antagonist. The results of the N4-substituted benzodioxinylpiperazines 1-10 are shown in Table 2. Compound 1, a close analogue of flesinoxan, is a potent full agonist. The corresponding butyrophenone derivatives 2 and 3, however are only partial agonists with intrinsic activities of 50%, 48% and 71%, 67% respectively. The compounds display low efficacies as antagonists. Replacement of the carbonyl group of 3 by methylene (4) changes the pharmacological profile from predominantly agonistic (3) to predominantly

antagonistic (4). Compound 4 is a potent mixed agonist /antagonist. These results show that in this series the presence of a secondary amide function is necessary for full agonism. Lengthening the side chain of 1 by two carbon atoms (5) reduces the intrinsic activity to 81%, 85%. The potency decreases by a factor of 24. The phthalimidoethyl derivative 6 displays neither consistent agonistic nor antagonistic activity at the maximal concentration of 10⁻⁶ M.

Table 1: Potency (pEC₅₀, pA₂), Agonistic and Antagonistic efficacy and Inhibition Constants (pKi) of 5-HT_{1A} Receptor Reference Compounds. \pm SEM between brackets.

	pEC ₅₀	%ago	pA ₂	%anta	pKį
OH ON N N OCH2)2 H C N F F F F F F F F F F F F	8.18 (0.19)	100		0	8.77 (0.05)
IPSAPIRONE	7.17 (0.20)	69		0	8.26 (0.06)
WAY 100635		0	9.69 (0.05)	100	9.30 (0.07)

Lengthening of the alkyl chain of 6 by two carbon atoms results in 7, a partial agonist with high potency as agonist as well as antagonist. The saccharinethyl derivative 8, is a full agonist with low potency. Lengthening of the alkyl chain of 8 by two carbon atoms changes the profile completely as 9 is a highly

Table 2: Potency (pEC₅₀, pA₂), Agonistic and Antagonistic Efficacy and Inhibition Constants (pKi) of N₄ - Substituted benzodioxinylpiperazines for 5-HT_{1A} receptors. \pm SEM between brackets.

$$\bigvee_{\mathsf{R}_1}^{\mathsf{O}} \bigvee_{\mathsf{N} - \mathsf{R}}^{\mathsf{N} - \mathsf{R}}$$

R	n	R₁	no	pEC₅o	%ago	pA ₂	%anta	pΚ _ι
-(CH2)n - N - C - F	2	Н	1	9.02 9.07	97 97		0	9.53 (0.12)
- (CH ₂) _n - C - F	3	н	2	8.28 8.13	50 48		22 42	8.87 (0.26)
$-\left(CH_{2}\right)_{n}-\mathop{C}_{0}$	3	н	3	8.54 8.55	71 67		33 18	9.17 (0.05)
— (CH ₂) _n —	4	Н	4	8.17 8.22	45 50	7.82 7.60	74 70	9.49 (0.00)
$-\left(CH_{2}\right)_{n}-\overset{H}{\underset{0}{N}}-\overset{C}{\underset{1}{\underset{0}{\bigvee}}}-\overset{F}{\underset{0}{\bigvee}}$	4	н	5	7.90 7.50	81 85		17 0	8.98 (0.24)
$-\left(CH_{2}\right)_{n}-N$	2	н	6		0 30		0 2	7.50 (0.11)
	4	Н	7	8.87 8.24	44 49	9.18 9.17	55 62	9.64 (0.11)
$-\left(CH_{2}\right)_{n}-N$	2	Н	8	6.60 6.20	97 86		0	8.91 (0.28)
- (CH ₂) _n - N	4	н	9		11 23	10.1 9.44	68 65	9.54 (0.21)
	4	CI	10		0	10.08 9.54		9.15 (0.08)

potent antagonist (pA₂=10.1, 9.44) with an efficacy of 68%,65% and without significant agonistic properties.

Full antagonism is obtained by substitution in 9 with a chloro atom at the 7-position of the benzodioxinyl moiety (10). Compound 10 is as potent as the reference compound WAY 100635.

The linear chain analogues 1 - 5 and the cyclic imides 7 - 10 display a high affinity for the rat 5-HT_{1A} receptor (Table 2). Agonists, mixed agonists/antagonists and antagonists bind equally well. The presence of a secondary amide function is not a prerequisite for high affinity. The high potency of the saccharinethyl derivative 8 in the binding studies is in contrast to the low potency in the adenylyl cyclase test. This discrepancy can not be explained easily. It is possible that 8 has a higher affinity for the rat 5-HT_{1A} receptor than for the human 5-HT_{1A} receptor.

Summarizing, the characteristics of the N4-substituent at the benzodioxinylpiperazine have a large effect on the agonistic/antagonistic profile of the compounds. The N4-benzamidoethyl derivative 1 is a potent full agonist, the N4-phenylbutyl 4 and N4-phthalimidobutyl 7 derivatives are potent mixed agonists / antagonists and the N4-saccharinbutyl derivative 9 is predominantly antagonistic.

A novel potent full 5-HT_{1A} receptor antagonist is the 7-chlorobenzodioxinyl piperazine analogue of 9 compound 10.

References and Notes:

- van Wijngaarden, I.; Soudijn, W.; Tulp, M.Th.M. Serotonin Receptors and their Ligands; Olivier, B., van Wijngaarden I, Soudijn, W., Eds.; Elsevier Science Publisher; Amsterdam 1997, Pharmacochemistry Library Vol.. 27, pp 17-44.
- Yasunaga, T.; Naito, R.; Kontani, T.; Tsukamoto, S.; Nomura, T.; Yamaguchi, T., Mase, T. J. Med. Chem. 1997, 40, 1252.
- 3. van Steen, B.J.; van Wijngaarden, I.; Tulp, M.Th.M.; Soudijn, W. J.Med. Chem. 1994, 37, 2761.
- 4. van Steen, B.J.; van Wijngaarden, I.; Tulp, M.Th.M.; Soudijn, W. J. Med. Chem. 1995, 38, 4303.
- 5. Hartog, J.; van Steen, B.J.; Mos, J.; Schipper, J. 1995, EP 0633260 A1.
- Compound 5: C₂₃H₂₈F₁N₃O₃.HCl.0.25H₂O, m.p.201-2°C; compound 7: C₂₄H₂₇N₃O₄, m.p.128-30°C; compound 8: C₂₁H₂₃N₃O₅S₁.HCl, m.p.289-92°C; compound 9:C₂₃H₂₇N₃O₅S₁. 0.10H₂O, m.p. 146-9°C.
- 7. Adenylyl cyclase assay: Chinese hamster ovary cells (CHO cells) in which the human 5-HT_{1A} receptor was stably expressed were grown in α -Delbucco's modified Eagle medium (α-DMEM) supplemented with 10% heat-inactivated fetal calf serum, 2 mM glutamine, 1 muM pyruvate 5000 units/mL penicillin and 5000 mg/ml streptomycin at 37°C in 93% air/7% CO₂. Cells grown to confluency in 24 wells plates were loaded with 1 muCi [³H]-adenine in 0.5 mL culture medium per well and incubated for 2h at 37°C. After incubation the cells were washed with 0.5 mL phosphate buffered saline (PBS) containing 1 mM isobutylmethylxanthine (IBMX, phosphodiesterase inhibitor) and reincubated for 10 min with 0.5 mL PBS, containing 1 mM IBMX, 0.1 muM forskolin in the presence or absence of the test compound. Each test was performed in four fold. The reaction was stopped after aspiration by 1 mL of ice cold 5% trichloroacetic acid solution containing 1.1 mM of ATP and 1.0 mM c-AMP. The plates are centrifuged for 10 min at 250xg. Sequential chromotography on a 1 mL Dowex (50WX4 200-400 mesh cationic exchange resin) column and a 600 mg aluminumoxyde column permitted the separation of [³H]ATP and [³H]c-AMP. 0.8 mL supernatant followed by 2 mL ultrapure water (UW) was

percolated through the Dowex column and collected in 6 mL Instagel for liquid scintillation counting ([]*H]ATP fraction). Thereafter the Dowex column was coupled to the aluminumoxyde column and the columns were rinsed with 4x 1 mL of UW. After uncoupling, the aluminumoxyde column was cluted with 0.1 M imidazole.HCl solution, pH=7.5. The cluate was collected in 6 mL Instagel for liquid scintillation counting ([]*H]c-AMP fraction). The recovery of []*H]c-AMP from the sequential column chromatography was determined by parallel chromatography of a stock solution of 0.8 mL stopping mixture spiked wit 0.1 muM []*H]c-AMP.

Data handling. The [3H]c-AMP produced by forskolin stimulation of adenlytyl cyclase is calculated as the ratio corrected for basal production of [3H]c-AMP and fixed at 100%.

%conversion =
$$\frac{[^{3}\text{H}]\text{cAMP}}{[^{3}\text{H}]\text{cAMP} + [^{3}\text{H}]\text{ATP}}$$
 *100%

Agonistic potency. Inhibition of the forskolin stimulated production of c-AMP by the compounds was assessed from concentration-effect relationship curves using the non-linear curve fitting program INPLOT (GraphPad Software, San Diego, Ca.) and expressed as pEC₅₀ values. The mean value for four observations per data point was used for the construction of the curves and the pEC₅₀ values were obtained from two independent experiments. The intrinsic activity (=efficacy) of a compound is expressed as a percentage of its maximal effect relative to the maximal effect of 8-OH-DPAT.

Antagonist potency. Antagonist potency of a compound was assessed by its ability to concentration dependently antagonize the inhibition of forskolin stimulated c-AMP production by 10⁶ M 8-OH-DPAT.

The IC₅₀ values obtained were converted to pA₂ values using the Cheng-Prusoff equation for competitive interactions:

$$pA_2 = -logIC_{50} + log (1 + L/EC_{50})$$

were L is the concentration and EC₅₀ is the median effective dose of the ligand used. Full antagonists block the effect of 8-OH-DPAT for 100%. The efficacy of a compound is expressed as a percentage ranging from 0-100%.

8. Gozlan, H.; El Mestikawy, S.; Pichet, L.; Glowinski, J.; Hamon, M. Nature 1983, 305, 140.